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ABSTRACT

A maximal vector of a set is one which is not less than any other

vector in all components . We derive a recurrence relation for computing

the average number of maximal vectors in a set of n vectors in d-space

under the assumption that all (~ I)d relative orderings are equally

probable. Solving the recurrence shows that the average number of

maxima is O((ln n)’3~~). We use this result to construct an algorithm for

finding all the maxima that has expected running time linear in n (for

sets of vectors drawn under our assumptions). For a given set of random

points, the result is also used to derive an upper bound on the expected

number of points from the set which are on the boundary of the convex

hull of the set.
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1. INTRODUCTION

The problem of finding al l  maxima l vectors in a set of n d-vectors

has recen tly been studied by Kung , Luccio and Preparata [33 and F. Yao

[7] .  In this paper we consider the related problem of f inding the

expected number of maximal elements in a given set. We give a solution

to that problem under a very general probabili ty dis tr ibut ion and then

apply the answer to the solution of related problems .

A maximal vector is one which is not less than any other vector in

all components . More precisely, we say that a vector P dominates the

vector Q if P is greater than Q in every component; then a vector is

maximal if it is not dominated by any other vector in the set. For

example , in [(1,2,4), (2,3,1), (3,1,3) ,  (4 ,4,2)), only (2 ,3,1) is not

maximal. It is helpful to view this problem geometrically when d = 2 .

In that case the vectors can be considered as n points in the plane and

a given vector is maximal if and only if there i~ no point in its first

quadrant (above it and to its right).

A probabili ty dis t r ibut ion is implied as we ask for the expected

number of maxima . A mathematically tractable yet reasonabel model

assumes that for each vector , the magnitude of one component is dis-

tributed independently of the magnitude of the 3ther components and , for

each component, the magnitudes chosen for each vector are distinct. The

second restriction implies that the vectors can be sorted into increasing

order on any component , yielding a relative ordering from 1 to n. Thus

each set of n d-vectors corresponds to a particular relative ordering

for each componen t , that is, to one of (~~I)d 
assignments of permutations
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of (l ,2 ,3 , . . . ,n) to the d components . Examples of multivariate statis-~

tical distributions with distinct component distributed independently

include the multivariate normal and multivariate uniform drawn from a

unit hypercube. (Recall that elements drawn independently from any con-

tinuous distribution function are distinct with probability one.)

The solution to the maximal vector problem is often required in the

analysis of the runtime of dynamic prograunning algorithms (see Schkolnick

[5] and Schkolnick and Thompson [6]). In dynamic programming the solu-

tion to a problem of size n is obtained from the best solutions of prob-

lems of size n-l. For many applications a cost vector of length one is

sufficient, i.e., there is a single best solution to all subproblems .

In cases where more than one best solution must be retained for each sub-

problem, it may still be possible to design a multidimensional cost func-

tion with the property that the best solutions for every subproblem are

just the maximal ones . If the Cost vectors of candidate solutions are

assumed to have the proper distribution , then the maximal vector problem

indicates the expected number of best solutions .

In Section 2 we formulate and solve a recurrence that shows that the

expected number of maxima among n d-vectors is 0((ln fl)
d 1
)~ We use this

result in Section 3 to give an algorithm for finding all the maxima of a

set of n d-vectors that has expec ted running time linear in n. In Section

4 we show for a given set of random points , how this result gives an upper

bound on the expected number of points from the set which are on the

boundary of the convex hull of the set.

_ _ _ _  _ _ _  _ _ _
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2.  DETE RMINING THE AVERAGE NUMBER OF MAX IMA

In this section we derive the primary result of this paper. We

give two derivations of this result. Our first derivation is formal and

therefore rather complicated , so we supplement that with a second , in-

formal derivation. The second derivation is not completely precise , but

it does give an intuitive idea of the essential workings of the formal

derivation. We proceed directly with the formal derivation ; the informal

begins immediately after the statement of Theorem 2.

Let A(n,d) be the average number of maximal vectors out of n d-vectors .

Without loss of generality, assume that the vector components in each dimen-

sion are integers from 1 to n. We shall therefore view a set of n d-vectors

as a d by n array, whose rows are the vectors and whose columns are permuta-

tions of [l,2,...,n3. Let S be the set of all such arrays. Then S contains

(~~)
d 
arrays. For any array r in S, let M(r) denote the number of maxima l

vectors in r. By the definition of A(n,d ) ,  we have

L M(r)

A(n ,d) = 
rES 

d
(nt)

Let T be a subset of S which consists of arrays with their first columns equal

to (1,2,... ~)
T
• Because M(r) is invariant under permutations of the rows in

r, it follows that

M ( r ) -
~
-

~
- M(r).

f l .  L.
rET rES

Thus,

(2.1) (n i ) d l A(n d) ~~ M(r ) .
rET 

~~~~~~~~~
- - - —--- _ _ _ _ _
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Any array r in T can be decomposed as

region i 1 A--- 1 -

region 2 B i C
r

where B = (2,3~~~ •,~)
T~ (Region 1 contains only one vector, namely, (l

~
Ar)•)

For i = 1,2, define Mi
(r) to be the number of maximal vectors in r which

are in region i. Thus,

(2.2) M(r) = M1
(r) + M2(r).

$~ote that M1
(r) is either zero or one.) Taking sums in both sides, we have

by (2.1),

(2.3) (n~)
d
~~A(n,d) = LM 1(r) + LM2

(r).

rET rET

Lenmia l

r~ r

M
1
~~~ 

~ (nt)’~~ A(n,d-l).

Proof

Note that ~~M1
(r) is the number of times, over all r in T, vector (l ,A~~

rET
is maximal in r. Note also that vector (l ,A

~
) is maximal over all n d-vectors

in r if and only if vector A
r 

is maximal over all n (d-l)-vectors in the sub-
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arraY
[
~~]. Then ~~M1

(r) is simply the number of times, over all r in T, the
r rET rA l

vector A in the firs row is maximal in 
Lc

r 
J. Since over all r in T there

d-1. rj
are (ni) A(n,d-1) maximal (d-1)-vectors and the number of maximal vectors

occurring in each row is the same, it follows that

L M
1
(r) =i(n~)

d_l
A(n,d_l).

rET

Leimn a 2  
-

L~
(r) (n~)

d_l
A(n...l,d).

rET

Proof

Consider an array r in T. Note that a d-vector in region 2 is maximal

over all ri d-vectors in r if and only if it is maximal over all n-l d-vector s

in region 2. Therefore, for any r in T we shall consider only region 2.

M2 (r) is the number of occurrences of maximal vectors in region 2 over all

T. Let A be a fixed (d-l)-vector. Over all r in T where r has (l,A)

as its first row, there are ((n_l)~)
d_l

A (n_ l,d) maximal d-vectors occurring

in region 2. Since A may be chosen in n’~~
1 ways , we have

- 

d l
L~~~(r) (nt )  - 

A (n-1,d).

rET

The fol lowing theorem fol low s from (2.3)  and Lemmas I and 2.

Th eorem 1

(2.4) A(n,d) A(n- l,d) + 
A(n~d-1),

for n, d � 2.

_ _ _  _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _
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It is easy to check that

(2.5) A(l,d) = 1 for d � 1,

and

(2.6) A(n,l) = 1 for n � I.

The recurrence (2.4) with initial conditions (2.5) and (2.6) can be solved

by first setting up the generating functions

G~ (z) = L A(n,d+].)z’~, for n � 1.

d�0

By (2.4) and (2.6),

G (z) = G 1
(z) + ~ G (z), or

C ~(z)
(2.7) G~ (z) = 

-
n

for a � 2. By (2.5), 0
1
(z) = l/(l-z). Hence (2.7) implies that

1G (z) 11 —— ,

l�i�n i - 42.

which is Eq. (33) of Section 1.2.9 in Knuth Cl] with x~ = i/i. Define

= 1 + .i ~ + .i;~ + ... +

Knuth’s analysis shows that the coefficient of a
d 

in G~ (z) is

H’~~ (n)
1 

H~
2
~~(n)

2 
_______

k1,k ,...,k �0 1 1k
1
’. 2 2k2

’. d dk
d

- - - - --. - -~-- - ------- —~~~~~~- - _ __ _  - _ —  _



-
~
-
~
-
~~~~~~~

.- — 
~~~~~~~~~~~~~~~~~~~~ 

~~~r~~~L — ~~-.. 
__ — —-—

— 7 —

which is, by definition , A(n,d-1-l). Clearly,

(2.8) A(n,d) 
~ (d-i) t 

H ( n)~~
1
.

The values of A(n ,d) for small d are

A(n,l) = 1,

A(n,2) = 
~~~~~~~ which is the nth harmonic number H

A(n,3) = ~ H~~~ (~ ) 2 
+ ~ H~~~ (n ) ,

A(n ,4) = .
~~ H~~~(n)

3 
+ ~ H~~~~(n) H~

2
~~(n) + ~ H~~~~(n ) .

It is not difficult to show that the sum of the coefficients in A(n,d)

is always 1. (For example, the sum of the coefficients in A (n,4) is

+ ÷ 1.) Since H~~~ (n) � H~’~ o r for  a , r � 1, we have

(2.9) A(n,d)

By (2.8) and (2.9) we have

Theorenz 2

(d-i)t 
H ( n)~~~ �A(n,d) � H ( n)d l

.

Therefore, A(n,d) = O((ln fl)
d 1
) for fixed d.

We now give a more intuitive derivation of the recurrence for

A(n,d). As we stated previously, this derivation is not precise , but

it should help in get t ing an intuitive idea of the workings of the

previous proof. To compute the expected number of maxima in a set we

L ~~~~~~~~~~~ __~~~~~~~~~ - - - - - -- - .-- - --.~~
———-,-
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will consider the set sorted in order ..~y the first coordinate . (As before ,

we consider that all numbers have been translated to the integers from 1 to~~

a.) The situation we now have is illustrated in the following figure .

d- 1

l t
2 ’
3 ’

n-l
a

We now ask what is the probability that the i-th vector in the set is a

maximum? Since its first coordinate is greater than the first coordinates

of the 1-st through the (i- 1)-st vectors , it cannot be dominated by any of

those. ThereLore the i-th vector is a maxima if and only if its remaining

d-l coordinates are maximal in the set of the i-th through the n-th vectors .

The probability that the i-th vector is a maximal in this set is, by indepen-

dence , the expected number of maxima in the set (which is A (n- i+1,d-1))

divided by the total number of vectors in the set (which is rt- i+1). Since these

probabilities are indepnderit for all values of i, to find the expected number

of maxima in the set we sum the probabilities of each vector being maximal

and we have

A(n,d) 
A(n-i+1,d- 1)

n-i.+11=1

n
A(j,d-l)

j~ l 

. :, ??~~~~-~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~-.~~a-—
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Notice that the last sum is equivalent to the expression for A(n,d) in

Theorem 1.

We now give a simpler (and less precise) bound on the growth of A(n,d).

It is obvious that A(n ,d) must be monotone increasing in a, so if j � n

then A(j,d) �A (n ,d). We use this observation in the following derivation .

A(n,d) A(j,d-l)

• j~ l

a
A(n,d- 1)

j•~ l

= A(n,d-1) -
~~1

A(n ,d- l) H~~~ (n) .

Iterating this recurrence on d easily gives the upper bound

A(n,d) � H
)
(n)~~~1.
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3. A FAST EXPECTED TTh~ MAXIMA ALGORITHM

So fa r in this paper we have considered the problem of counting the num-

ber of max ima in a set of vectors ; a related problem is finding the maxima in a

set of vectors . This problem has received much attention recently. Kung ,

Luccio and Preparata [3] give an algorithm for finding the maxima of a vectors

in d-space that has worst-case running time of O(n in n) for d = 2 and

O(n(ln n)
d 2
) for d � 3. F. Yao [7] shows that the results in 2 and 3-space

are optimal by giving a worst-case lower bound of O(n in n) (indeed , she gives

a bound that is the exact number of comparisons taken by a known algorithm for

planar sets).

These results , however, deal only with the worst-case complexity of find-

ing maxima ; it is often interesting to consider also the average-case complexity.

In this section we will use Theorem 2 and a general divide and conquer schema to

give a fast expected time algorithm for finding maxima (this schema is invest-

igated in detail by Bentley and Shamos [1]). The algorithm we develop here

will have expected running time linear in a for vector sets drawn under the

“Independent and Distinct” assumptions stated in Section 1.

Our maxima algorithm is easily described recursively . Without loss of

general i ty , we assume that a is a power of two. To find the maxima of a set S

of n vectors , divide S into two sets A and B, each containing n/2 vectors.

Recursively find the maxima of A and B, calling those sets MA 
and M

B, respec-

tively. It is easy to see that the set of maximum vectors of S is the set of

maxima of MA 
L M

B
. Therefore we can find all the maxima of S by finding

the maxima of M
A ~ 

N
B
; to do this we use the algorithm of Kung , Luccio and

Preparata [3]. (Recursion in our original algorithm stops when n is less than 

~~~~~~~ • - -  -~~ ---------~~~~~~ ••. - - - • • -- - . - - -  • -- ---- - -~~~~~~~



— ~~~~~~~~~~~~~

— 11—

some predefined constant.) The division into subproblems can be imp lemented

on a random access computer by storing the vectors in a d by a array of scalar

values. Each vector is initially represented as a pair of integers which

define the left and right endpoints of a segment in the array. Division into

further subsets can be accomplished by taking the arithmetic mean of the end-

points as defining two new segments , etc.; note that the division preserves

randomness and can be accomplished in constant time.

The expected running time of this algorithm is easy to analyz e , give n that

the expected number of maxima in a set of a d-vectors is O((ln ~)
d l
) Since

di vis ion in to subproblems can be accomp lished in constant time , the recurr ence

describing the expected running time of our algorithm on n d-vectors is

(3.1) T(n,d) = 2T(n/2,d) + F(n,d)

where F(n,d) is the expected running time of the marriage step (finding the maxima

of MA U Let i be the number of vectors in M
A U Then the running

time of the marriage step using the algorithm of Kung , Luccio and Preparats is

bounded above by 0 ( i ( ln i)~~~
2 ) for d � 3. This gives

F(n,d) ~ ~ p(i) . i(ln j)
d_2

i l

where p(i) is the probability of there being exactly i maxima in ‘t~ . By

the fact that the number of maxima in A is independent of that in B , the expect-

ed value of i satisfies :

hilL 
____  - -- -  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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E( i)  p ( i )  . i

2. (expected number of maxima in a set of n/2 d-vectors)

2 . O((ln  n) d— l )

d- 1
• ~~O(( ln n) ) .

Therefore , by ln i � In a, we have

(3.2) F(n,d) � (in n)~~~
2
~~ p( i )  . j

2 d- 30((ln n) ).

Substituting (3.2) into (3.1) gives for the running time of our algorithm the

recurrence

T(n,d) � 2T(n/2,d) +O(( Ln n) 2~~
3
).

For fixed d, this recurrence is well known to have the solution

T(n,d) = 0(n) .

In addition to having a very fast  expected running time , our algorithm

also has quite a respectable worst-case performance. Note that F(n,d) is always

bounded above by O(n( ln  ~)d 2
) for d � 3, so the worst-case running time of

our algorithm is given by

T(n ,d) 2T(n/2 ,d) + O(n(ln

which has the solution

T(n,d) O(n (in a) 1)
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Thus in the worst-case our algorithm is only a factor of in n slower than the

best known worst-case algorithm.

We summar ize the main result of this section in the following theorem .

Theorem 3.

The maxima of a set of n d-vectors drawn from a distribution satisfying the

“Independent and Distinct” property can be found in expected time linear in n. 

-~~~~~--- - -~~~~~_
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4.  RE LATION TO CON VEX HULLS

The maxima l elements of a set of vectors are a crude representation of

the boundary of the set; the boundary can be more precisely defined as the

boundary of the convex hull of the set. While working with the convex hull

we will view the vectors as points in d-space. The convex hull of the n points

is then defined as the smallest convex set containing the n points. One can get

an in tuit ive picture of the convex hull of a planar point set by imagining the n

points as n nail s in a large boa r d , with  abou t an inch of each nail rema ining

above the board . The convex hull of this set can be found by taking a large

rubber ban d , st retching it inf in i te ly far  out in al l  directions , then le t t ing it

go. It will come to rest about certain of the nails , and the region within the

rubber band is the convex hull of the set.

Given a set of n points sampled independently from some underlying proba-

bility distribution function in d-space , what is the expected number of points

on the resulting convex hull? (Here we use the abbreviation “on the convex

hull” to mean “on the boundary of the convex hull”.) The answer to this ques-

tion is of course dependent of n, d, and the underlying distribution . Santalo

[4] describes a number of results  for different distributions; many of these

results and their original references are given in Bentley and Shamos [1]. In

this section we will give an upper bound on the number of hull points for dis-

tributions satisfying our requirement of independence among the d variables.

To arrive at this bound we will first show that every convex hull point is a

maximum under at least one of the 2
d 

possible different assignments of + and -

signs to the d components , and then use this fact and Theorem 2 to bound the

expected number of hull points . 

.. -- -—  -- - -
~~

- -- - -
~~
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To show that every convex hul l  point is a maximum under at least one of

the assignments of + and - signs , assume that the re is some hull  point h wh ich

is not. This implies that there is at least one point in each of h’s

orthants ; choose one point from each orthant and call this collection P. Because

values are distinc t, all points in P are properly contained in their orthants.

Consider now the convex hull of P; it must properly contain h. (If it contained

all the points of P and not h, then it would not be a convex set.) Since h is

• properly contained in the convex hull of P it must also be properly contained

in the convex hull of the original set. This contradicts our assumption and

establishes the desired fact.

• We have shown that every hull point is a maximum under at least one of the

possible assignments of + and - signs to the d variables. Consider now the

set of all points that are maximal under at leas t one of the s ign assignments ;

call this set N. Since the expected size of N is bounded above by

O((ln n)
d I
), and N contains all convex hull points , the expected number

of convex hull points is certainly bounded above by that expression . Thus we

have the following theorem.

Theorem 4.

The expected number of convex hull points in a point set of n points in d

dimension s satisfying the “ Independent and Dis t inc t”  property is bounded above

by O ( ( ln  ) d-l )
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